Lecture 9
Molecular Structure

Diatomic Molecules
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Born—Oppenheimer approximation

we are forced to make an approximation at the outset.
Even the simplest molecule,H,*, consists of three

particles, and its Schrodinger equation cannot be solved
analytically.

To overcome this difficulty, we adopt the Born-
Oppenheimer approximation, which takes note of the
great difference in masses of electrons and nuclel.




Born-Oppenheimer Approximation

Electrons can respond almost instantaneously to
displacement of the nuclei. Therefore, instead of trying
to solve the Schrddinger equation for all the particles
simultaneously, we regard the nuclei as fixed in position
and solve the Schrodinger equation for the electrons in
the static electric potential arising from the nuclei in that
particular arrangement. Different arrangements of nuclel
may then be adopted and the calculation repeated.

Electrons are thousands of times lighter than nucleil.
Therefore, they move many times faster



The set of solutions so obtained allows us |
to construct the molecular potential auRIsALen

| bond length
energy curve of a diatomic molecule (Fig.

=]

B
8.1), and in general a potential energy
surface of a polyatomic species, and to
identify the equilibrium conformation of

Molecular potential energy

'/
the molecule with the lowest point on this \i/
curve (or surface). W
. . . . Internuclear distance
The Born—Oppenheimer approximation is t ’

. . Fig. 8.1 A typical molecular
very reliable for ground electronic potential energy curve for
states, but it is less reliable for excited ¢ dfatomic species
states.

The Born-Oppenheimer Approximation states that since nuclei

move so slowly, as the nuclei move, the electrons rearrange almost
Instantaneously.




Hydrogen Molecular lon:
Born-Oppenheimer Approximation

The simplest molecule is not H,. Rather, it is H,*, which has two
hydrogen nuclei and one electron.

The H,* Hamiltonian (in au)
H:_ivz_lvi_lvz_i_ijLi
2M, 2M, 2 r, r, R,
KE KE KE PE PE PE

Nuc a Nuc b Elect e-N e-N N-N
Attr  Attr Repuls
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Born-Oppenheimer Approximation

Electrons are thousands of times lighter than nuclei.
Therefore, they move many times faster

The Born-Oppenheimer Approximation states that since nuclei
move so slowly, as the nuclei move, the electrons rearrange almost
Instantaneously.

With this approximation, it can be shown that one can separate
nuclear coordinates (R) and electronic coordinates (r), and get
separate Schroédinger Equations for each type of motion.

Nuclear Equation

1, 1., 1
= v = w2, = E |.4(R,)=E. - 7(R
[ 2Ma a 2Mb b + Rab + elj Z( ab) nuc z( ab)

E,, is the effective potential energy exerted by the electron(s) on
the nuclei as they whirl around (virtually instantaneously on the

time scale of nuclear motion)
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Electronic Equation

1 1 1
[__VZ ____]w - Eelectw - El//
2 r, T,

a

Because H,* has only one electron, there are no electron-electron
repulsion terms.

In a multielectron molecule, one would have the following terms:

1. Kinetic energy of each electron.

2. Attractive Potential energy terms of each electron
to each nucleus.

3. Repulsive Potential energy terms between each
pair of electrons
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An application: the hyarogen molecule-ion

Treatment of H,*
Molecular Orbitals

When we dealt with multielectron atoms, we assumed that the total
wavefunction is the product of 1 electron wavefunctions (1 for each
electron), and that one could put two electrons into each orbital, one
with spin o and the second with spin .

In analogy with this, when we have a molecule with multiple electrons,
we assume that the total electron wavefunction is product of

1 electron wavefunctions (“Molecular Orbitals™), and that we can put
two electrons into each orbital.

v (12.3,.N) = (1°Oa) - (11° @8, (v3° B ) (13 (A)ar, ).

Actually, that’'s not completely correct. We really use a
Slater Determinant of product functions to get an Antisymmetrized
total wavefunctions (just like with atoms).
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Linear Combination of Atomic Orbitals (LCAQO)

Usually, we take each Molecular Orbital (MO) to be a
Linear Combination of Atomic Orbitals (LCAO), where each atomic
orbital is centered on one of the nuclei of the molecule.

For the H,* ion, there is only 1 electron, and therefore we need only
1 Molecular Orbital.

The simplest LCAQO is one where the MO is a combination of
hydrogen atom 1s orbitals on each atom:

l// - Ca¢lsa + Cb¢lsb — Ca:lsa + Cb:lsb
shorthand

Assume that 1s_ and 1s,
are each normalized.
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Expectation Value of the Energy
l//:Ca:lSa+Cb:|Sb

Our goal is to first develop an expression relating the expectation value
of the energy to c, and c,,

Then we will use the Variational Principle to find the best set of
coefficients; i.e. the values of c, and c, that minimize the energy.

JwrHyde (y|H|y) _ Num
.[W *wdr <l// ‘ gy) Denom

(E)

Slide 10



v =c,1s, +c1s,

Denom = (v |y) =(c,1s, +¢,1s, |c,Is, +C,1s,)

Denom =c; (1s, |1s, ) + c,c, (1s,|1s, ) + €,C, (IS, |1s, ) +C; (IS, | 1S, )

Remember that (1s,|1s,) =(1s,|1s,) =1 because 1s, and 1s, are normalized.

Define: S, =(1s,|1s,) = (1s,|1s,), where S, is the overlap integral.

2 2
Denom =c; +2c_c. S, +C;
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v =c,1s, +c1s,

Num = (v |H|y) =(c,1s, +c,1s, |H|c,Is, +c,1s,)

Num =c; (1s,|H|1s,) +c,c, (Is, |H|1s, ) +c,c, (Is, |H|1s,) +c; (1s, |H |1s,)

H,. =(1s,|H|1s,)
H,, = (1s,|H|1s,)
H,, =(1s,|H|1s,)
Hy, = (Is,|H|1s,) =H, because H is Hermitian

Num =c;H,, +2c,c,H,, +c;H,  Note: For this particular problem,
H,,=H_, by symmetry.

However, this Is not true
In general.
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2 2 a2 2
Num=c H_ +2c.cH, +c/H, Denom =c; +2c_c. S, +C;

a aa

<E>:<W\H\w> _ Num _ ciHi +2¢,CH,, +CH,,

(w|w) " Denom ¢’ +2c,cS,, +C;

Minimizing <E>: The Secular Determinant

In order to find the values of c, and c,, which minimize <E>, we

want: @zo and @zO
oc oc,

a

It would seem relatively straightforward to take the derivatives
of the above expression for <E> and set them equal to 0.

However, the algebra to get where we want is extremely messy.
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(E) - caHaa+2c c,H, +cH,,
cZ+2c.C Sab+c

(¢ +2¢,¢,S,, +C2 )(E) =cH,, +2¢c,c,H,, +CiH,,

a aa

Differentiate both sides w.r.t. c,: Use product rule on left side

o[ (c2 260,80 +65)(E)] _ o[ciH, +26,64H +CiHs

oc, oc,
(c2 + 20 - >+<E>(2Ca+20b8ab+O):(20aHaa+2chab+O)
o(E)

Set =0 and group coefficients of c, and c,

oC

a

Slide 14



(E)(2c, +2¢,S,,)

(2c,H,, +2c,H,,)

After dividing both

(E)c, +(E)c,S,, =CH,, +CoH sides by 2

0=(H, ~(E))c, +(Ha —(E)Sy )y

or |(H.. —(E))c, +(H,, —(E)S,)c, =0

This is one equation relating the two coefficients, c, and c,.

We get a second equation if we repeat the procedure, except
differentiate w.r.t. c, and set the derivative =0.

The second
equation is: (Hab _<E>Sab)ca +(be _<E>)Cb =0
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Now we have two equations with two unknowns, c, and c,,.

All we have to do is use Cramer’s Rule to solve for them.

Those are homogeneous equations. The only way we can get
a solution other than the trivial one, c,=c,=0,
IS if the determinant of coefficients of ¢, and c, is zero.

The Secular Determinant
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Extension to Larger Systems

The 2x2 Secular Determinant resulted from using a wavefunction
consisting of a linear combination of atomic orbitals.

If, instead, you use a linear combination of N orbitals, then you get
an NxN Secular Determinant

A simple way to remember how to build a Secular Determinant is
to use the “generic” formula:

‘H" _<E>Sij‘ =0

1

After you have made the Secular Determinant, set the diagonal
overlaps, S; = 1.
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‘H" _<E>Sij‘ =0

1)

For example, if ¥ =cC,4, +C,4 +C.4,

Then the Secular Determinant is:

Haa _<E>Saa HaB _<E>Sab Hac _<E>Sac
Hab_<E>Sab be_<E>Sbb Hbc_<E>Sbc =0
Hac _<E>Sac Hbc _<E>Sbc Hcc _<E>Scc

Setting diagonal S; =1

Haa o E> HaB _<E>Sab Hac _<E>Sac
Hap _<E>Sab Hy, — E> Hy, _<E Spe| =0
Hac _<E>Sac Hbc _<E>Sbc cc E>
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H,* Energies

Linear Equations Secular Determinant
(Ha —(E))c. +(Hap —(E)S,)c, =0 H,-(E) H,-(E)S, iy
(Hy —(E)Sy)c, +(Hy —(E))c, =0 Hy ~(E)Ss  Hu —(E)

Outline: 1. We will expand the Secular Determinant.
This will give us a quadratic equation in <E>.

2. We will solve for the two values of <E> as a function
of H ., H,,, S,

aa’

3. We will explain how the matrix elements are evaluated and
show the energies as a function of R

4. For each value of <E>, we will calculate the MO;
l.e. the coefficients, c,and c,,.
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Expansion of the Secular Determinant

This expression can be expanded, yielding a quadratic equation
In <E>. This equation can be solved easily using the quadratic
formula.

However, let's remember that for this problem:

(15, [H|1s,)

aa

H
H

bb <:I'Sb ‘ H ‘]Sb>
Therefore, H,,=H_, (by symmetry)

The equation then simplifies to: (<E>—Haa)2 = (Hab _<E>Sab)2
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Solving for the Energies

Therefore: <E>:M
1+S,,

_HatHy g (E) = PP

orf (B 1+S,, E). 1-S,
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H_ +H _ Haa — Hab
E) — _aa ab and E =
Bl =T B =77,

Evaluating the Matrix Elements and Determining <E>, and <E>.

This is the easiest part because we won't do it.

These are very specialized integrals. For H,, and S_;, they involve
two-center integrals. That’s because 1s_ is centered on nucleus a,
whereas 1s, is centered on nucleus b.

They can either be evaluated numerically, or analytically using a
special “confocal elliptic” coordinate system. We will just present
the results. They are functions of the internuclear distance, R.

3
U S Y 3 PO sab:eR{R_mﬂj
2 R R 3
1 R
Hab——ESab—(R+1)e
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1 H,+H, 1

E — __aa V —(E - _ _aa ab
Haa — Ha V) =(E 1 _ Haa - Hab 1
E) =T " e

<E>, and <E>_represent the electronic energy of the H,* ion.

The total energy, <V>, and <V>_, also includes the
Internuclear repulsion, 1/R
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Antibonding Orbital

Bonding Orbital Asymptotic limit
of E, as R—w

\_/’ V(x0) = -0.50 au

(R GaleukzigdsMimenum Energy
E ... (cal)=-0.565au at R (cal)=2.49a,=1.32A
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Comparison with Experiment

E...(cal) =-0.565 au
Rn(cal) =1.32 A

Dissociation Energy

De(Cal) = EH _ Emin(Cal)
=-0.5 au — (-0.565 au)

Antibonding Orbital

Bonding Orbital

\/ = +0.065 au+27.21 eV/au

=1.77eV

Rmin D
Cal. 1.32A 1.77eV
Expt. 1.06 2.79

e

(R Vhius Mirinus Line)

The calculated results aren’t great, but it's a start.

We'll discuss improvements after looking at the wavefunctions.
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H,* Wavefunctions

The LCAO Wavefunction; ¥ =C.1s, +Cy,1s,

Remember that by using the Variational Principle on the expression
for <E>, we developed two homogeneous linear equations
relating c, and c,,.

(Haa =(E))Ca +(Ha —(E) Sz ) e, =0

(Mo —(E) S, ).+ (Hy, —(E))c, =0

We then solved the Secular Determinant of the matrix coefficients
to get two values for <E>

H. +H H,_—H
E — aa ab E — aa ab
< >+ 1+S,, < >‘ 1-S,,

We can now plug one of the energies (either <E>, or <E>)
into either of the linear equations to get a relationship between
c, and c, for that value of the energy.
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Bonding Wavefunction

H,+H
H._—(E H. —(E = . F) —_2 ab
( 2 >)Ca+( » >Sab)cb 0 Plug in (). 1+S,,
LHaa . Haa + Hab jca +(Hab . Haa + Hab Sab)Cb =0
1+S,, 1+S,_,

(Haa (1+ Sab)_ Haa B Hab)ca + (Hab (1+ Sab ) —H Sab o HabSab)Cb =0

aa

.50 D (.50

(HaaSab o Hab ) C, + (Hab o HaaSab )Cb =0
HaaSab B Hab C, + Hab B HaaSab C, = 0
HaaSab B Hab HaaSab B Hab

c,-c,=0 —— C,=C,

Note: Plugging into the second of the two linear equations
gets you the same result.
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Cb:Ca + l//:Ca:lsa+Cb:|Sb —_— W+:Ca(lsa+]sb)

or v, :N+ (]sa+lsb)

N, (=c,) is determined by normalizing v,
Normalization: 1= [yly.dr=(v. |y,)

1=(N, (1s, +1s,)

N, (35, +1s, )) = N7 ({2, |15,) + (15, |15, ) + (15, 15, ) + (15, 35, )

1=N2(1+S,,+S,, +1)=N?(2+2S,,)

N, = L » v, =N, (Is, +1s,)
J2+2S,, 1
= (1s, +1s,)

J2+2S,,
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Antibonding Wavefunction

a
T
M
g
I
QD
o]
o]
(ep

(Haa=(E))C, +(Hy, —(E) S, )c, =0

Haa o Haa — Hab Cat Hab o Haa — Hab Sab C, = 0
1-S, 1

Note: Plugging into the second of the two linear equations
gets you the same result.
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Plotting the Wavefunctions
‘//+ - N +(]'Sa+]'sb)

N\

Note that the bonding MO, v,, has significant electron density in
the region between the two nuclei.

Note that the antibonding MO, y_, has a node (zero electron density in

the region between the two nuclei.
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Improving the Results

One way to improve the results is to add more versatility to the
atomic orbitals used to define the wavefunction.

We used hydrogen atom 1s orbitals:

/ /1 . . .
Psa =18, = Le and b, =15, =,[—€  (In atomic units)
T T

Instead of assuming that each nucleus has a charge, Z=1, we can use
an effective nuclear charge, Z’, as a variational parameter.

13 . Z 13 ‘
b, = £ e7% and ¢, = a/—e‘z "
T T

The expectation value for the energy, <E>, is now a function
of both Z’ and R.
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Z 13 Z 13
-Z'r, =Z'r
¥ =C.9, +Cyh, = C, R T

This expression for the wavefunction can be plugged into the
equation for <E>. The values of Z' and R which minimize <E>
can then be calculated. The best Z’ is 1.24.

R D,
Cal.(Z=1) 1.32A 1.77eV

Cal.(Z’=1.24) 1.06 2.35
Expt. 1.06  2.79

min
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An Even Better Improvement: More Atomic Orbitals

Z-Direction

»
>

o/ ®

Instead of expanding the wavefunction as a linear combination of just
one orbital on each atom, put in more atomic orbitals. e.g.

v =c1s,+c,2s, +C,2p,, +C, 1S, +C.2S, +C. 2P,

Note: A completely general rule is that if you assume that a Molecular
Orbital is an LCAO of N Atomic Orbitals, then you will get an
NXN Secular Determinant and N Molecular Orbitals.
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Z-Direction

»
>

o/ ®

We ran a calculation using: 4 s orbitals, 2 p, orbitals and 1 d,, orbital
on each atom.

The calculation took 12 seconds. We'll call it Cal.(Big)

Rmin De
Cal.(Z=1) 1.32A 1.77eV
Cal.(Z=1.24) 1.06 2.35
Cal.(Big) 1.06  2.78
Expt. 1.06  2.79
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Outline

* Hydrogen Molecular lon: Born-Oppenheimer Approximation.

* Math Prelim.: Systems of Linear Equations — Cramer’s Rule

* LCAO Treatment of H,*

* H,* Energies

* H,* Wavefunctions

* MO Treatment of the H, Molecule

* Homonuclear Diatomic Molecules

* Heteronuclear Diatomic Molecules
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MO Treatment of the H, Molecule

The H, Electronic Hamiltonian

@

1 1 1 1 1 1 1
AVioIvio ot

2 2 Na Ib P o Io
KE KE PE PE PE PE PE
e, e, e-N e-N e-N e-N

e-e

Attr  Attr  Attr Attr Repuls
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The LCAO Molecular Orbitals

_M
- 1-5,
w =N (Is,-1s,) Antibonding Orbital
E, =H.
1s,
E+ — H:ia-a +SHab
" v, =N (s, +1s,) Bonding Orbital

H.. =(1s,|H|1s,) is the energy of an electron in a hydrogen
1s orbital.

We can put both electrons in H, into the bonding orbital,
v,, one with a spin and one with 3 spin.
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Notation

Antibonding Orbital
v =N_(Is, —]sb) =0,1s

Bonding Orbital

W+ =N+(]Sa+15b):O' :IS

g

+« antibonding

*
J 1S «— combin. of o 1s
‘ 1s orbitals u
e- density max. on ‘ . I . .
symmetric w.r.t. antisymmetric w.r.t.

internuclear axis . . . .
inversion inversion
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The Molecular Wavefunction

Put 1 electron in 6,1s with a spin: c,1s(1) o,

Put 1 electron in o,1s with B spin: c,1s(2),

Form the antisymmetrized product using a Slater Determinant.

1 [o,15(0e, 0,154,
Yvo = Pl 1s(2e, ,15(2)8,

Wy = %[agils(l)al .0,15(2)B, - 0,15(DB, - 5,15(2)a, |

1l 1
Yvo F [0915(1)(7g:|5(2)_ ﬁ[alﬁz o 1810(2] = l//spat ) l//spin
\|’spat \|’spin
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Vo = [0,151),15(2) | %[alﬂz - Ba,]

Vi = %[alﬂz - B,  The spin wavefunction is already normalizeD

Because the Hamiltonian doesn’t operate on the spin, the spin
wavefunction has no effect on the energy of H,.

This independence is only because we were able to write the total
wavefunction as a product of spatial and spin functions.
This cannot be done for most molecules.

Wepr = Og15(D0,15(2) =[N, (Is, +1s,) || N, (1s, +1s, ) |
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The MO Energy of H,

Weper = 04 15(D0,15(2) =N, (Is, +1s,) | N, (1s, +1s, ) |

1 1 1 1 1 1 1
H:_Evf_ivg_r T
la 1b 2a 2b 12

The expectation value for the ground state H, electronic energy

IS given by:

H l//spat >

E= <Wspat
using the wavefunction and Hamiltonian above.

The (multicenter) integrals are very messy to integrate, but can
be integrated analytically using confocal elliptic coordinates, to
get E as a function of R (the internuclear distance)

The total energy is then: V(R) = E(R)+%
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Enin(cal)=-1.099 au  D,(cal)= 2°E, — E,;,(cal)
R nin(cal)=0.85 A D.(cal)= +0.099 au = 2.69 eV

Rmin De
Cal.(Z=1) 0.85A 2.69eV
Expt. 0.74 4.73
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Improving the Results

As for H,*, one can add a variational parameter to the atomic orbitals
used in 6 1s.
ZIS =Z'r Z'S -Z'r,

g, =,—e"* and ¢ =,—e€
T T

(in atomic units)

Ve = 041500, 15(2) =[N (4, + 6, ) | [N (4, + ;)]

The energy is now a function of both Z' and R.
One can find the values of both that minimize the energy.

R D,
Cal.(z=1) 0.85A 270eV
Cal.(Var.Z') 0.73 3.49
Expt. 0.74  4.73

min
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An Even Better Improvement: More Atomic Orbitals

Z-Direction

o
»

e ®

As for H,*, one can make the bonding orbital a Linear Combination
of more than two atomic orbitals; e.qg.

o,1s =c1s, +¢,2s, +¢,2p,, +C,1S, +C;2S, +Ce2P,,

We performed a Hartree-Fock calculation on H, using an LCAO
that included 4 s orbitals, 2 p, orbitals and 1 d,, orbitals on each hydrogen.

R D,
Cal.(z=1) 0.85A 270eV
Cal.(Var.Z) 0.73  3.49

Cal.(HF-Big) 0.74 3.62  Question: Hey!! What went wrong??
Expt. 074 473

min
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Question: What went wrong??

When we performed this level calculation on H,*, we nailed
the Dissociation Energy almost exactly.

But on H, the calculated D, is almost 25% too low.

Answer: The problem, is that unlike H,*, H, has
2 (two) electrons, whose motions are correlated.
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Homonuclear Diatomic Molecules

We showed that the Linear Combination of 1s orbitals on two

hydrogen atoms form 2 Molecular Orbitals, which we used to describe
the bonding in H,* and H..

These same orbitals may be used to describe the bonding in
He,* and lack of bonding in He.,,.

Linear Combinations of 2s and 2p orbitals can be used to
create Molecular Orbitals, which can be used to describe
the bonding of second row diatomic molecules (e.g. Li,).

We can place two electrons into each Molecular Orbital.

Definition: Bond Order — BO = Y2(ng — n,)

ng = number of electrons in Bonding Orbitals
n, = number of electrons in Antibonding Orbitals
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Bonding in He,*

He,* has 3 electrons

Electron Configuration

. 2 * 1
515 =y =N(Is, ~1s,) Config = (agls) (auls)

Antibonding Orbital

1s,

BO = %(2-1)
c,1s =y, =N(Is, +1s,) 1/

Bonding Orbital
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Slater Determinant: He,*
Config = (agfls)2 (0:15)1

o, 15Dy, o, 15(} B, c.1s()e,

Yo = = o0,1s(2)a, 0c,1s(2)p4, c.15(2)c,
V3! s

o, 1s(3)a; 0, 1s(3)B; 0,15(3)x,

Vo =%\ogls(1)al 0,15(2)p, o,15(3)a

Shorthand Notation
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He, has 4 electrons

Electron Configuration

) 2 * 2
Config = (agils> (Guls)
ols=y_ =N(1s,-1s,)
Antibonding Orbital

BO = ¥4(2-2)
c,1s =y, =N(1s, +1s,) -0

Bonding Orbital

Actually, He, forms an extremely weak “van der Waal’'s complex”,
with R... ~ 3 A and D, ~ 0.001 eV [it can be observed at T = 103 K.
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Second Row Homonuclear Diatomic Molecules

We need more Molecular Orbitals to describe diatomic molecules
with more than 4 electrons.

+ and n — Sigma (c) MO'’s
Max. e~ density along
Internuclear axis

(X&) and (X&) — sigma (o) MOs

Max. e- density along
Internuclear axis

and — Pi(n) MO’s
Max. e~ density above/below
Internuclear axis
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Sigma-2s Orbitals

“

0,25 =N (2s,-2s,)

0,25 =N(2s,+2s,)
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Sigma-2p Orbitals

6:2p = N (2pza + 2pzb)
Antibonding Orbital

() S

ngp - N(sza—szb)
Bonding Orbital

Note sign reversal of 62p from c2s and c1s orbitals.
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Pi-2p Orbitals

7,2p =N(2p,, ~2p,, )
Antibonding Orbital

7,2p =N(2p,, +2p,, )
Bonding Orbital

There is a degenerate n,2p orbital and a degenerate n, 2p
orbital arising from analogous combinations of 2p,, and 2p,,
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Homonuclear Diatomic Orbital Energy Diagram

o.2p

u

m,2p 7y 2P

2P 2Py 2P, o,2p 2Py 2Py 2P,
w,2p mw,2p
c.2s
2s, 0425 2s,
c.1s
1s o,ls Is,
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Consider Li,

(a) What is the electron configuration?

(b) What is the Bond Order?

742 (c) What is the spin multiplicity?
(Singlet, Doublet or Triplet)

o,2p
m,2p 6 Electrons
2 * 2 2
&' 2 (Gg]S) <GUZIS) (0928)
c,2s BO =%(4-2) =1
o'l v S=0: Singlet
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Consider F,
(a) What is the electron configuration?

(b) What is the Bond Order?
(c) What is the spin multiplicity?
(Singlet, Doublet or Triplet)

18 Electrons

(0915)2 (GS]S)Z (09 23)2 <0u 28)2 (7Z'u 2p)4 (Gg Zp)2 (7Z'g Zp)4

BO = %5(10-8) = 1

S=0: Singlet
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c.2p
cop ]
¥

o,2p
I TR

c.2s

0,28

c.1s

Consider O,
(a) What is the electron configuration?

(b) What is the Bond Order?
(c) What is the spin multiplicity?
(Singlet, Doublet or Triplet)

16 Electrons

(0915)2 (GS]S)Z (09 23)2 <0u 28)2 (7Z'u 2p)4 (Gg Zp)2 (7Z'g Zp)2

BO = %4(10-6) = 2

S=1: Triplet
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c.2p
cop ]
¥
o,2p
I TR
c.2s
0,28
c.1s
o1 L}
O,

Consider O, , O,", O,

(a) Which has the longest bond?

(b) Which has the highest vibrational frequency?
(c) Which has the highest Dissociation Energy?

O,: 16 Electrons — BO = 2
O,": 15 Electrons —BO = 2.5

O, 17 Electrons —BO =1.5

O, has the longest bond.

O, " has the highest vibrational frequency.

O, " has the highest Dissociation Energy.
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A More General Picture of Sigma Orbital Combinations

() (>

The assumption in the past section that
only identical orbitals on the two atoms
combine to form MOQ’s is actually a bit

+ + . ..
simplistic.
In actuality, each of the 6 c MO’s is really
a combination of all 6 AO’s.

+ +

Yvo =CIs, +¢C,2s, +C,2p,, +C,IS, +C.2S, +C. 2P,
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Approximate vs. Accurate MO’s in C,

Yuo =C,1S, +C,2s, +C,2p,, +C,1S, +C.2S, +C, 2P,

o2p MO (E = -15 eV)

~0.70-2p,. +0.70-2p,,

WApprox

Wacr =|-0.07-1s, +0.40-2s, +0.60-2p,, | +[-0.07 -1, +0.40-2s, —0.60-2p,, ]

52s MO (E ~ -40 eV)

~0.70-2s, +0.70-2s,

l//Approx

Wacewr =|—0.17-1s,+0.50-2s, +0.23-2p,, |+[-0.17-1s, +0.50 - 2s, +0.23-2p,, |

cls MO (E = -420 eV)

~0.70-1s, +0.70-1s,

l//Approx

W per = [0.70-1s, +0.01-2s_]+[0.70-1s, +0.01-2s, ]
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Heteronuclear Diatomic Molecules

Haa_<E> Hab_<E>Sab

=0
Hab_<E>Sab be_<E>

H,#H

aa

Therefore, the energies are not symmetrically displaced,
and the magnitudes of the coefficients are no longer equal.

G| # |Cd]
Antibonding (A) Wa =Cofhy +Codh,
E=H_
E=H,
Bonding (B)
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Interpretation of Secular Determinant Parameters

=(¢.|4,) = [ 407

Overlap Integral

@ Large S,

% Small S,

Generally, S, ~ 0.1 -0.2

Commonly, to simplify the calculations,

it is approximated that S_, = O
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H.,=(¢|H|¢)= j¢;H¢adr Energy of an electron in atomic orbital,
¢,, In an unbonded atom.

Hy, = (¢ |H|4,) = f¢;|-|¢bdf Energy of an electron in atomic orbital,
¢, In an unbonded atom.

H..,H, <0 Traditonally, H_, and H,, are called “Coulomb Integrals”

aa !

Commonly, H_, is estimated as —IE, where IE is the lonization Energy
of an electron in the atomic orbital, ¢,.

H, ,.(C) ~ —20.8eV

IE(2p)=11.3 eV
H,,,,(C) ~-11.3eV

IE(25)=20.8 eV
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H,, =(¢,|H|4,) = j¢;H¢bdr Interaction energy between atomic orbitals,
d)a and d)b .

Traditionally, H_, is called the “Resonance Integral”.

H,, IS approximately proportional to: (1) the orbital overlap
(2) the average of H_, and H_,

H, ~ K{Ha& +be}sab K ~1.75
2

Wolfsberg-Helmholtz Formula
(used in Extended Huckel Model)

H,<O0
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Interpretation of Orbital Coefficients

Let’'s assume that an MO is a linear combination of 2 normalized AO’s:

WMO - N (Ca¢a + Cb¢b)

Normalization: 1= jyffﬂodr = (Wvo [Wwo)
1=(N(c.4, +Cydy)|N(C.8, +Cyh )

1=N2[c2(4,|4,)+C2 (] 4) +2¢,0, (4] )]

1= N2 :Cs +c§ + ZCaCbSab] where S, = <¢a ‘ ¢b>

Orbital

L Overlap

- 2 2
\/ca +C, +2C.C.S,,
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4

1

MO — > >
\/ca +C, +2¢.C,S,,

(Ca¢a + Cb¢b )

C C
_ a b
WMO - > 5 ¢a + > > ¢b
JC2 +¢f Je2 +¢cf

Fraction of electron density in orbital a

Fraction of electron density in orbital b

Fraction of electron density in orbital |
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Homonuclear Diatomic Molecules: H,, =H,,
Co| = Cd]
f =f =0.50
Heteronuclear Diatomic Molecules: H, #H,
co| # [c4|
f, =1,

Slide 67



Antibonding (A) Wa = Cofh, +Co8h,
E=H_

Bonding (B) Wy =C.4, +C. &,

One has a quadratic equation, which can be solved to yield
two values for the energy, <E>.

One can then determine c,/c, for both the bonding
and antibonding orbitals.
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A Numerical Example: Hydrogen Fluoride (HF)

Is,(H)  2p,(F)

Haa_<E> Hab_<E>Sab

=0
Hab_<E>Sab be_<E>

Vo = N(Cod, +Cudhy ) =N (c,1s,(H) +c,2p,,(F))

Matrix Elements

H.. =(4,|H|¢,) = (1s,(H)|H|1s,(H)) = -13.6eV
Hyy = {d [H[4,) = (20,,(F)|H | 2p,,(F)) = -17.4eV
Ha = (8| H| ) = (15, (F)[H|2p,,(F)) = -2.0eV

Sab = <¢a ‘ ¢b> = <]Sa(H)‘ 2pzb(F)> ~0
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Haa — E> Hab_<E>Sab _0 H,_=-13.6eV
Hab_<E>Sab be_<E> H,=-17.4eV
l H,, =—2.0eV
S, ~0
-13.6 - (E) -2
2 -174-(E)

(136~ (E))(-17.4~(E))~(-2)(-2) =0

(E) +31.0(E)+232.64=0

_ -31.0+/(31.0)° - 4(1)(232.64)

E
(E) >
— —+/ -31.0++/30.44
(E), = 31.0 5 3044 _ 18266V (E), = 5 =-12.74eV
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(-13.6-(E))c, —2c, =0

-13.6-(E) 2 |,
-2 -17.4-(E)| -2¢, +(-17.4—(E))c, =0
Bonding MO Antibonding MO
| -13.6-(-18.25) |c, —2c, =0 | -13.6—-(-12.74) |c, - 2c, =0
z—b -2.33 - ¢, =2.33c, z—b - 0430 - c, =-0.430c,
Ve = (Ca¢a + Cb¢b) Ya= (Ca¢a + Cb¢b)

c, (¢, —0.4304, )
N (¢, —0.4304, )

C, (¢a + 2.33¢b)
N (¢a + 2.33¢b)

Ve = = 2 (¢a +2'33¢b) Va = = 2 (¢a _0'430¢b)
J1+(2.33) J1+(-0.430)

vy =0.394¢, +0.919¢, v, =0.919¢4, —0.3944,
= 0.394-1s,(H)+0.919-2p,, (F) =0.919-1s,(H)-0.394-2p, (F)
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Electron Densities in Hydrogen Fluoride
Bonding Orbital

v, =0.394¢, +0.9194, =0.394-1s_(H)+0.919 - 2p,, (F)

Cs 2 C2 2
L=fi==rs =(0.394)"=0.16  f, =f = e =(0.919)" = 0.84
b a b

a

Over 80% of the electron density of the two electrons in the
bonding MO resides on the Fluorine atom in HF.

Antibonding Orbital
v, =0.919¢ —0.394¢4 =0.919-1s_(H)-0.394-2p,, (F)

C; 2 C2 2
=hi=ors =(0.919)" = 0.84 f=fe =57 =(0.394)" =0.16
b a b

The situation is reversed in the Antibonding MO.
However, remember that there are no electrons in this orbital.

Slide 72



