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Lecture 9

Molecular Structure

Diatomic Molecules



Born–Oppenheimer approximation

we are forced to make an approximation at the outset. 

Even the simplest molecule,H2
+, consists of three 

particles, and its Schrödinger equation cannot be solved 

analytically. 

To overcome this difficulty, we adopt the Born–

Oppenheimer approximation, which takes note of the 

great difference in masses of electrons and nuclei.
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Born-Oppenheimer Approximation

Electrons can respond almost instantaneously to 

displacement of the nuclei. Therefore, instead of trying 

to solve the Schrödinger equation for all the particles 

simultaneously, we regard the nuclei as fixed in position 

and solve the Schrödinger equation for the electrons in 

the static electric potential arising from the nuclei in that 

particular arrangement. Different arrangements of nuclei 

may then be adopted and the calculation repeated. 
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Electrons are thousands of times lighter than nuclei.

Therefore, they move many times faster



The set of solutions so obtained allows us 

to construct the molecular potential 

energy curve of a diatomic molecule (Fig. 

8.1), and in general a potential energy 

surface of a polyatomic species, and to 

identify the  equilibrium conformation of 

the molecule with the lowest point on this 

curve (or surface). 

The Born–Oppenheimer approximation is 

very reliable for ground electronic 

states, but it is less reliable for excited 

states.
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The Born-Oppenheimer Approximation states that since nuclei

move so slowly, as the nuclei move, the electrons rearrange almost

instantaneously.
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Hydrogen Molecular Ion:  

Born-Oppenheimer Approximation

The simplest molecule is not H2.  Rather, it is H2
+, which has two

hydrogen nuclei and one electron.  
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Electrons are thousands of times lighter than nuclei.

Therefore, they move many times faster

Born-Oppenheimer Approximation

The Born-Oppenheimer Approximation states that since nuclei

move so slowly, as the nuclei move, the electrons rearrange almost

instantaneously.

With this approximation, it can be shown that one can separate

nuclear coordinates (R) and electronic coordinates (r), and get 

separate Schrödinger Equations for each type of motion.

Nuclear Equation

Eel is the effective potential energy exerted by the electron(s) on

the nuclei as they whirl around (virtually instantaneously on the

time scale of nuclear motion)

   2 21 1 1

2 2
a b el ab nuc ab

a b ab

E R E R
M M R
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Electronic Equation

Because H2
+ has only one electron, there are no electron-electron

repulsion terms.

In a multielectron molecule, one would have the following terms:

1.  Kinetic energy of each electron.

2. Attractive Potential energy terms of each electron

to each nucleus.

3. Repulsive Potential energy terms between each

pair of electrons

21 1 1

2
elect

a b

E E
r r
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An application: the hydrogen molecule-ion

Treatment of H2
+

Molecular Orbitals

When we dealt with multielectron atoms, we assumed that the total

wavefunction is the product of 1 electron wavefunctions (1 for each

electron), and that one could put two electrons into each orbital, one

with spin  and the second with spin .

In analogy with this, when we have a molecule with multiple electrons,

we assume that the total electron wavefunction is product of

1 electron wavefunctions (“Molecular Orbitals”), and that we can put

two electrons into each orbital.

Actually, that’s not completely correct.  We really use a

Slater Determinant of product functions to get an Antisymmetrized

total wavefunctions (just like with atoms).

         1 1 1 2 2 3 2 41,2,3,... (1) (2) (3) (4) ...MO MO MO MON           
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Linear Combination of Atomic Orbitals (LCAO)

Usually, we take each Molecular Orbital (MO) to be a

Linear Combination of Atomic Orbitals (LCAO), where each atomic

orbital is centered on one of the nuclei of the molecule.

For the H2
+ ion, there is only 1 electron, and therefore we need only

1 Molecular Orbital.

The simplest LCAO is one where the MO is a combination of

hydrogen atom 1s orbitals on each atom:

a b

1sa 1sb

Assume that 1sa and 1sb

are each normalized.

1 1a sa b sbc c   

shorthand

1 1a a b bc s c s 
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Expectation Value of the Energy

Our goal is to first develop an expression relating the expectation value

of the energy to ca and cb.

Then we will use the Variational Principle to find the best set of

coefficients; i.e. the values of ca and cb that minimize the energy. 

1 1a a b bc s c s  

*

*

H d
E

d

  

  





H 

 


Num

Denom
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1 1a a b bc s c s  

1 1 1 1a a b b a a b bDenom c s c s c s c s    

2 21 1 1 1 1 1 1 1a a a a b a b b a b a b b bDenom c s s c c s s c c s s c s s   

Remember that                                    because 1sa and 1sb are normalized.1 1 1 1 1a a b bs s s s 

Define:                                      , where Sab is the overlap integral.1 1 1 1ab a b b aS s s s s 

2 22a a b ab bDenom c c c S c  



Slide 12

Note:  For this particular problem,

Hbb=Haa by symmetry.

However, this is not true

in general.

1 1a a b bc s c s  

1 1 1 1a a b b a a b bNum H c s c s H c s c s    

2 21 1 1 1 1 1 1 1a a a a b a b b a b a b b bNum c s H s c c s H s c c s H s c s H s   

1 1

1 1

1 1

1 1

aa a a

bb b b

ab a b

ba b a

H s H s

H s H s

H s H s

H s H s








abH because H is Hermitian

  2 22a aa a b ab b bbNum c H c c H c H
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Minimizing <E>:  The Secular Determinant

It would seem relatively straightforward to take the derivatives

of the above expression for <E> and set them equal to 0.

However, the algebra to get where we want is extremely messy.

In order to find the values of ca and cb which minimize <E>, we

want: 0 0
a b

E E
and

c c

 
 

 

  2 22a aa a b ab b bbNum c H c c H c H 2 22a a b ab bDenom c c c S c  

H Num
E

Denom

 

 
 

2 2 2

2 2

2

2

a aa a b ab b bb

a a b ab b

c H c c H c H

c c c S c
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Differentiate both sides w.r.t. ca:  Use product rule on left side

Set                  and group coefficients of ca and cb
0

a

E

c






 


 

2 2

2 2

2

2

a aa a b ab b bb

a a b ab b

c H c c H c H
E

c c c S c

     2 2 2 22 2a a b ab b a aa a b ab b bbc c c S c E c H c c H c H

           
 

2 2 2 22 2a a b ab b a aa a b ab b bb

a a

c c c S c E c H c c H c H

c c

     2 22 2 2 0 2 2 0a a b ab b a b ab a aa b ab

a

E
c c c S c E c c S c H c H

c
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This is one equation relating the two coefficients, ca and cb.

We get a second equation if we repeat the procedure, except

differentiate w.r.t. cb and set the derivative =0.

   2 2 2 2a b ab a aa b abE c c S c H c H  

   0 aa a ab ab bH E c H E S c   

or     0aa a ab ab bH E c H E S c   

The second

equation is:     0ab ab a bb bH E S c H E c   

a b ab a aa b abE c E c S c H c H  
After dividing both

sides by 2
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Now we have two equations with two unknowns, ca and cb.

All we have to do is use Cramer’s Rule to solve for them.

Those are homogeneous equations.  The only way we can get 

a solution other than the trivial one, ca=cb=0,

is if the determinant of coefficients of ca and cb is zero.

The Secular Determinant

    0aa a ab ab bH E c H E S c   

    0ab ab a bb bH E S c H E c   

0
aa ab ab

ab ab bb

H E H E S

H E S H E
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Extension to Larger Systems

The 2x2 Secular Determinant resulted from using a wavefunction

consisting of a linear combination of atomic orbitals.

If, instead, you use a linear combination of N orbitals, then you get

an NxN Secular Determinant

A simple way to remember how to build a Secular Determinant is

to use the “generic” formula:

After you have made the Secular Determinant, set the diagonal

overlaps, Sii = 1.

0ij ijH E S 
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Then the Secular Determinant is:

0ij ijH E S 

For example, if a a b b c cc c c     

0

aa aa aB ab ac ac

ab ab bb bb bc bc

ac ac bc bc cc cc

H E S H E S H E S

H E S H E S H E S

H E S H E S H E S

  

   

  

0

aa aB ab ac ac

ab ab bb bc bc

ac ac bc bc cc

H E H E S H E S

H E S H E H E S

H E S H E S H E

  

   

  

Setting diagonal Sii = 1
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H2
+ Energies

Linear Equations

Outline: 1.  We will expand the Secular Determinant.

This will give us a quadratic equation in <E>.

2.  We will solve for the two values of <E> as a function

of Haa, Hab, Sab.

3.  We will explain how the matrix elements are evaluated and

show the energies as a function of R

4.  For each value of <E>, we will calculate the MO;

i.e. the coefficients, ca and cb.

    0aa a ab ab bH E c H E S c   

    0ab ab a bb bH E S c H E c   

Secular Determinant

0
aa ab ab

ab ab bb

H E H E S

H E S H E
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Expansion of the Secular Determinant

This expression can be expanded, yielding a quadratic equation

in <E>.  This equation can be solved easily using the quadratic

formula.

Therefore, Hbb=Haa (by symmetry)

The equation then simplifies to:

0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 
    

2

0aa bb ab abH E H E H E S    

or     
2

0aa bb ab abE H E H H E S    

However, let’s remember that for this problem: 1 1

1 1

aa a a

bb b b

H s H s

H s H s





   
2 2

aa ab abE H H E S  
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Solving for the Energies

   
2 2

aa ab abE H H E S  

 aa ab ab ab abE H H E S H E S     

ab aa abE E S H H    1 ab aa abE S H H  

Therefore:
1

aa ab

ab

H H
E

S






or and
1

aa ab

ab

H H
E

S




 1

aa ab

ab

H H
E

S
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Evaluating the Matrix Elements and Determining <E>+ and <E>-

This is the easiest part because we won’t do it.

These are very specialized integrals.  For Hab and Sab, they involve

two-center integrals.  That’s because 1sa is centered on nucleus a,

whereas 1sb is centered on nucleus b.

They can either be evaluated numerically, or analytically using a

special “confocal elliptic” coordinate system.  We will just present

the results.  They are functions of the internuclear distance, R.

and
1

aa ab

ab

H H
E

S




 1

aa ab

ab

H H
E

S






21 1 1
1

2

R

aaH e
R R

 
     

 

 
1

1
2

R

ab abH S R e   

3

1
3

R

ab

R
S e R  
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<E>+ and <E>- represent the electronic energy of the H2
+ ion.  

1

aa ab

ab

H H
E

S






1

aa ab

ab

H H
E

S






1 1

1

aa ab

ab

H H
V E

R S R 


   



1 1

1

aa ab

ab

H H
V E

R S R 


   



The total energy, <V>+ and <V>- , also includes the 

internuclear repulsion, 1/R
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Asymptotic limit

of EH as R

V() = -0.50 au

Antibonding Orbital

<V>+

1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

R Vplus Vminus Line( )

R/a0

E
  
(a

u
)

<V>-

Bonding Orbital

Calculated Minimum Energy

Emin(cal) = -0.565 au   at Rmin(cal) = 2.49 a0 = 1.32 Å

1 1

1

aa ab

ab

H H
V E

R S R 


   



1 1

1

aa ab

ab

H H
V E

R S R 
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Antibonding Orbital

<V>+

1 2 3 4 5

-0.5

-0.4

-0.3

-0.2

-0.1

R Vplus Vminus Line( )

R/a0

E
  
(a

u
)

<V>-

Bonding Orbital

Calculated Minimum Energy

Emin(cal) = -0.565 au

Rmin(cal) = 1.32 Å

Comparison with Experiment

Dissociation Energy

De(cal) = EH – Emin(cal)

= -0.5 au – (-0.565 au)

= +0.065 au•27.21 eV/au

= 1.77 eV

Rmin De

Cal.   1.32 Å    1.77 eV

Expt.  1.06       2.79

The calculated results aren’t great, but it’s a start.

We’ll discuss improvements after looking at the wavefunctions.
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H2
+ Wavefunctions

Remember that by using the Variational Principle on the expression

for <E>, we developed two homogeneous linear equations 

relating ca and cb.

We then solved the Secular Determinant of the matrix coefficients

to get two values for <E>

We can now plug one of the energies (either <E>+ or <E>-)

into either of the linear equations to get a relationship between

ca and cb for that value of the energy.

The LCAO Wavefunction: 1 1a a b bc s c s  

    0aa a ab ab bH E c H E S c   

    0ab ab a bb bH E S c H E c   

1

aa ab

ab

H H
E

S




 1

aa ab

ab

H H
E

S
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Bonding Wavefunction

Note: Plugging into the second of the two linear equations

gets you the same result.

Plug in 1

aa ab

ab

H H
E

S





    0aa a ab ab bH E c H E S c   

0
1 1

aa ab aa ab
aa a ab ab b

ab ab

H H H H
H c H S c

S S

    
      

    

     1 1 0aa ab aa ab a ab ab aa ab ab ab bH S H H c H S H S H S c       

    0aa aa ab aa ab a ab ab ab aa ab ab ab bH H S H H c H H S H S H S c       

    0aa ab ab a ab aa ab bH S H c H H S c   

0aa ab ab ab aa ab
a b

aa ab ab aa ab ab

H S H H H S
c c

H S H H S H

    
    

    

0a bc c  b ac c
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N+ (=ca) is determined by normalizing +

b ac c + 1 1a a b bc s c s    1 1a a bc s s

 

or  1 1a bN s s
 
 

Normalization: *1 d    
   

 

   1 1 1 1 1a b a bN s s N s s
 

    2 1 1 1 1 1 1 1 1a a a b b a b bN s s s s s s s s


   

   2 21 1 1 2 2ab ab abN S S N S
 

     

1

2 2 ab

N
S





 

 

1 1

1
1 1

2 2

a b

a b

ab

N s s

s s
S
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Antibonding Wavefunction

Note: Plugging into the second of the two linear equations

gets you the same result.

HW

    0aa a ab ab bH E c H E S c   
Plug in 1

aa ab

ab

H H
E

S






0
1 1

aa ab aa ab
aa a ab ab b

ab ab

H H H H
H c H S c

S S

    
      

    

HW

0a bc c  b ac c 

     
1

1 1 1 1 1 1
2 2

a a b a b a b

ab

c s s N s s s s
S
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Plotting the Wavefunctions

 ba ssN 11   ba ssN 11  

0 1 2 3

Nuc

a

Nuc

b



0 1 2 3

Nuc

a

Nuc

b

2

Note that the bonding MO, +, has significant electron density in

the region between the two nuclei.

Note that the antibonding MO, - , has a node (zero electron density in

the region between the two nuclei.
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Improving the Results

One way to improve the results is to add more versatility to the

atomic orbitals used to define the wavefunction.

We used hydrogen atom 1s orbitals:

Instead of assuming that each nucleus has a charge, Z=1, we can use

an effective nuclear charge, Z’, as a variational parameter.

The expectation value for the energy, <E>, is now a function

of both Z’ and R.

1 1

1 1
1 1a br r

sa a sb bs e and s e 
 

 
    (in atomic units)

3 3
' '' '

a bZ r Z r

a b

Z Z
e and e 
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Rmin De

Cal.(Z=1)         1.32 Å    1.77 eV

Cal.(Z’=1.24)    1.06       2.35

Expt.                 1.06       2.79

This expression for the wavefunction can be plugged into the

equation for <E>.  The values of Z’ and R which minimize <E>

can then be calculated.  The best Z’ is 1.24.

3 3
' '' '

a bZ r Z r

a a b b a b

Z Z
c c c e c e  
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An Even Better Improvement:  More Atomic Orbitals

a b

Z-Direction

Instead of expanding the wavefunction as a linear combination of just

one orbital on each atom, put in more atomic orbitals. e.g.

Note:  A completely general rule is that if you assume that a Molecular

Orbital is an LCAO of N Atomic Orbitals, then you will get an

NxN Secular Determinant and N Molecular Orbitals.

1 2 3 4 5 61 2 2 1 2 2a a za b b zac s c s c p c s c s c p      
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a b

Z-Direction

We ran a calculation using: 4 s orbitals, 2 pz orbitals and 1 dz2 orbital

on each atom.

The calculation took 12 seconds.  We’ll call it Cal.(Big)

Rmin De

Cal.(Z=1)         1.32 Å    1.77 eV

Cal.(Z’=1.24)    1.06       2.35

Cal.(Big)           1.06       2.78

Expt.                 1.06       2.79
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Outline

• Math Prelim.:  Systems of Linear Equations – Cramer’s Rule

• MO Treatment of the H2 Molecule

• LCAO Treatment of H2
+

• Homonuclear Diatomic Molecules

• H2
+ Energies

• H2
+ Wavefunctions

• Heteronuclear Diatomic Molecules

• Hydrogen Molecular Ion:  Born-Oppenheimer Approximation.
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MO Treatment of the H2 Molecule

The H2 Electronic Hamiltonian

a b

1

2

R

r1a r1b

r2a r2b

KE

e1

KE

e2

PE

e-N

Attr

PE

e-e

Repuls

PE

e-N

Attr

PE

e-N

Attr

PE

e-N

Attr

2 2

1 2

1 1 2 2 12

1 1 1 1 1 1 1

2 2 a b a b

H
r r r r r
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The LCAO Molecular Orbitals

1sb1sa

Antibonding Orbital

E
n

e
rg

y

Bonding Orbital

We can put both electrons in H2 into the bonding orbital,

+, one with  spin and one with  spin.

1

aa ab

ab

H H
E

S







1

aa ab

ab

H H
E

S







(1 1 )a bN s s
 
 

(1 1 )a bN s s
 
 

H aaE H
H aaE H

is the energy of an electron in a hydrogen

1s orbital.

1 1aa a aH s H s
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Notation

e- density max. on

internuclear axis
symmetric w.r.t.

inversion

Combin. of

1s orbitals

antisymmetric w.r.t.

inversion

antibonding

Antibonding Orbital

 1 1a bN s s
 
  *1u s

1g s

Bonding Orbital

 1 1a bN s s
 
 

1g s *1u s
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The Molecular Wavefunction

Put 1 electron in g1s with  spin:  g1s(1) 1

Put 1 electron in g1s with  spin:  g1s(2)2

Form the antisymmetrized product using a Slater Determinant.

spat spin

1 1

2 2

1 (1) 1 (1)1

1 (2) 1 (2)2!

g g

MO

g g

s s

s s

   


   


1 2 1 2

1
1 (1) 1 (2) 1 (1) 1 (2)

2
MO g g g gs s s s             

 1 2 1 2

1
1 (1) 1 (2)

2
MO g gs s           spat spin  
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Because the Hamiltonian doesn’t operate on the spin, the spin

wavefunction has no effect on the energy of H2.

This independence is only because we were able to write the total

wavefunction as a product of spatial and spin functions.

This cannot be done for most molecules.

 1 2 1 2

1
1 (1) 1 (2)

2
MO g gs s          

The spin wavefunction is already normalizeD 1 2 1 2

1

2
spin     

   1 (1) 1 (2) 1 1 1 1spat g g a b a bs s N s s N s s  
 

         



Slide 41

The MO Energy of H2

The (multicenter) integrals are very messy to integrate, but can

be integrated analytically using confocal elliptic coordinates, to

get E as a function of R (the internuclear distance)

   1 (1) 1 (2) 1 1 1 1spat g g a b a bs s N s s N s s  
 

         

2 2

1 2

1 1 2 2 12

1 1 1 1 1 1 1

2 2 a b a b

H
r r r r r

         

The expectation value for the ground state H2 electronic energy

is given by:

using the wavefunction and Hamiltonian above.

spat spatE H 

The total energy is then:
1

( ) ( )V R E R
R
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De: Dissociation Energy

0.0 0.5 1.0 1.5 2.0 2.5

-1.0

E
n

e
rg

y
 (

a
u
)

R (Angstroms)

2•EH

Rmin De

Cal.(Z=1)         0.85 Å    2.69 eV

Expt.                0.74        4.73

Emin(cal)=-1.099 au

R,min(cal)= 0.85 Å

De(cal)= 2•EH – Emin(cal)

De(cal)= +0.099 au = 2.69 eV
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Improving the Results

As for H2
+, one can add a variational parameter to the atomic orbitals

used in g1s.

The energy is now a function of both Z’ and R.

One can find the values of both that minimize the energy.

Rmin De

Cal.(Z=1)          0.85 Å    2.70 eV

Cal.(Var. Z’)      0.73       3.49

Expt.                 0.74       4.73

(in atomic units)
3 3

' '' '
a bZ r Z r

a b

Z Z
e and e 

 

 
 

   1 (1) 1 (2)spat g g a b a bs s N N               
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An Even Better Improvement:  More Atomic Orbitals

a b

Z-Direction

As for H2
+, one can make the bonding orbital a Linear Combination

of more than two atomic orbitals; e.g.

We performed a Hartree-Fock calculation on H2 using an LCAO

that included 4 s orbitals, 2 pz orbitals and 1 dz2 orbitals on each hydrogen.

Rmin De

Cal.(Z=1)          0.85 Å    2.70 eV

Cal.(Var. Z’)      0.73       3.49

Cal.(HF-Big)      0.74      3.62

Expt.                  0.74      4.73

Question: Hey!!  What went wrong??

1 2 3 4 5 61 1 2 2 1 2 2g a a za b b zas c s c s c p c s c s c p      
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Question: What went wrong??

When we performed this level calculation on H2
+, we nailed

the Dissociation Energy almost exactly.

But on H2 the calculated De is almost 25% too low.

Answer: The problem, is that unlike H2
+, H2 has

2 (two) electrons, whose motions are correlated. 
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Homonuclear Diatomic Molecules

We showed that the Linear Combination of 1s orbitals on two 

hydrogen atoms form 2 Molecular Orbitals, which we used to describe

the bonding in H2
+ and H2. 

These same orbitals may be used to describe the bonding in

He2
+ and lack of bonding in He2.

Linear Combinations of 2s and 2p orbitals can be used to 

create Molecular Orbitals, which can be used to describe

the bonding of second row diatomic molecules (e.g. Li2).

We can place two electrons into each Molecular Orbital.

Definition: Bond Order – BO = ½(nB – nA)

nB = number of electrons in Bonding Orbitals

nA = number of electrons in Antibonding Orbitals
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Bonding in He2
+

E
n

e
rg

y

1sa 1sb

He2
+ has 3 electrons

BO = ½(2-1)

= 1/2
Bonding Orbital

 1 1 1g a bs N s s 


  

Antibonding Orbital

 *1 1 1u a bs N s s 


  

Electron Configuration

   
12

*1 1g uConfig s s 
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Slater Determinant: He2
+

*

1 1 1

*

2 2 2

*

3 3 3

1 (1) 1 (1) 1 (1)
1

1 (2) 1 (2) 1 (2)
3!

1 (3) 1 (3) 1 (3)

g g u

MO g g u

g g u

s s s

s s s

s s s

     

      

     



    
12

*1 1g uConfig s s

Shorthand Notation

*

1 2 3

1
1 (1) 1 (2) 1 (3)

3!
MO g g us s s      
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He2
E

n
e
rg

y

1sa 1sb

He2 has 4 electrons

BO = ½(2-2)

= 0

Actually, He2 forms an extremely weak “van der Waal’s complex”,

with Rmin  3 Å and De  0.001 eV [it can be observed at T = 10-3 K.

Bonding Orbital

 1 1 1g a bs N s s 


  

Antibonding Orbital

 *1 1 1u a bs N s s 


  

Electron Configuration

   
22

*1 1g uConfig s s 
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Second Row Homonuclear Diatomic Molecules

We need more Molecular Orbitals to describe diatomic molecules

with more than 4 electrons.

+ +and Sigma () MO’s

Max. e- density along

internuclear axis2sa 2sb

+- +-
2pza 2pzb

and Sigma () MO’s

Max. e- density along

internuclear axis

+

-

2pya

and Pi () MO’s

Max. e- density above/below

internuclear axis

+

-

2pyb

2pxa and 2pxb also combine to give  MO’s
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Sigma-2s Orbitals

 * 2 2 2u a bs N s s  

Antibonding Orbital

 2 2 2g a bs N s s  

Bonding Orbital

E
n

e
rg

y

2sa 2sb+ +
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Sigma-2p Orbitals
E

n
e
rg

y

+-
2pza

+-
2pzb

Note sign reversal of 2p from 2s and 1s orbitals.

Bonding Orbital

   2 2 2g za zbp N p p

Antibonding Orbital

   * 2 2 2u za zbp N p p
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Pi-2p Orbitals
E

n
e
rg

y +

-

2pya

+

-

2pyb

There is a degenerate u2p orbital and a degenerate g
*2p

orbital arising from analogous combinations of 2pxa and 2pxb

Bonding Orbital

   2 2 2u ya ybp N p p

Antibonding Orbital

   * 2 2 2g ya ybp N p p
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Homonuclear Diatomic Orbital Energy Diagram

1 bs1 as

*1u s

1g s

2 bs2 as

* 2u s

2g s

2 xbp 2 ybp 2 zbp2 zap2 xap 2 yap

2u p 2u p

2g p

* 2g p * 2g p

* 2u p
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Consider Li2
(a) What is the electron configuration?

(b) What is the Bond Order?

(c) What is the spin multiplicity?

(Singlet, Doublet or Triplet)

6 Electrons

BO = ½(4-2) = 1

S = 0 :  Singlet

1g s

*1u s

2g s

* 2u s

2u p

2g p

* 2g p

* 2u p

     
22 2

*1 1 2g u gs s s  
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Consider F2

(a) What is the electron configuration?

(b) What is the Bond Order?

(c) What is the spin multiplicity?

(Singlet, Doublet or Triplet)

18 Electrons

BO = ½(10-8) = 1

S = 0 :  Singlet

1g s

*1u s

2g s

* 2u s

2u p

2g p

* 2g p

* 2u p

             
2 2 42 2 24* * *1 1 2 2 2 2 2g u g u u g gs s s s p p p      
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Consider O2

(a) What is the electron configuration?

(b) What is the Bond Order?

(c) What is the spin multiplicity?

(Singlet, Doublet or Triplet)

16 Electrons

BO = ½(10-6) = 2

S = 1 :  Triplet

1g s

*1u s

2g s

* 2u s

2u p

2g p

* 2g p

* 2u p

             
2 2 22 2 24* * *1 1 2 2 2 2 2g u g u u g gs s s s p p p      
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Consider O2 , O2
+ , O2

-

(a) Which has the longest bond?

(b) Which has the highest vibrational frequency?

(c)   Which has the highest Dissociation Energy?

O2

O2
- has the longest bond.

O2
+ has the highest vibrational frequency.

O2
+ has the highest Dissociation Energy.

1g s

*1u s

2g s

* 2u s

2u p

2g p

* 2g p

* 2u p

O2:  16 Electrons – BO = 2

O2
+: 15 Electrons – BO = 2.5

O2
-:  17 Electrons – BO = 1.5
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A More General Picture of Sigma Orbital Combinations

+-

2pza

+-

2pzb

+

2sa

+

2sb

+

1sa

+

1sb

The assumption in the past section that

only identical orbitals on the two atoms

combine to form MO’s is actually a bit

simplistic.

In actuality, each of the 6  MO’s is really

a combination of all 6 AO’s.

1 2 3 4 5 61 2 2 1 2 2MO a a za b b zbc s c s c p c s c s c p      
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Approximate vs. Accurate MO’s in C2

1 2 3 4 5 61 2 2 1 2 2MO a a za b b zbc s c s c p c s c s c p      

   0.70 1 0.01 2 0.70 1 0.01 2Accur a a b bs s s s        

0.70 1 0.70 1Approx a bs s    

   0.17 1 0.50 2 0.23 2 0.17 1 0.50 2 0.23 2Accur a a za b b zbs s p s s p              

1s MO (E  -420 eV)

2s MO (E  -40 eV)

2p MO (E  -15 eV)

0.70 2 0.70 2Approx za zbp p    

0.70 2 0.70 2Approx a bs s    

                 0.07 1 0.40 2 0.60 2 0.07 1 0.40 2 0.60 2Accur a a za b b zbs s p s s p



Heteronuclear Diatomic Molecules

Therefore, the energies are not symmetrically displaced,

and the magnitudes of the coefficients are no longer equal.

a

b

Antibonding (A)

Bonding (B)

aaE H

bbE H

B a a b bc c   

' '

A a a b bc c   

0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 

bb aaH H

b ac c
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Interpretation of Secular Determinant Parameters

+ + Large Sab

+ + Small Sab

Generally, Sab  0.1 – 0.2

Commonly, to simplify the calculations,

it is approximated that Sab  0

0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 

Overlap Integral

*

ab a b a bS d      
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Haa , Hbb < 0

Commonly, Haa is estimated as –IE, where IE is the Ionization Energy

of an electron in the atomic orbital, a.

Carbon

IE(2s)=20.8 eV

IE(2p)=11.3 eV

2s

2p

C+

Traditionally, Haa and Hbb are called “Coulomb Integrals”

0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 

Energy of an electron in atomic orbital,

a, in an unbonded atom.

*

aa a a a aH H H d      

Energy of an electron in atomic orbital,

b, in an unbonded atom.

*

bb b b b bH H H d      

2 ,2

2 ,2

( ) 20.8

( ) 11.3

s s

p p

H C eV

H C eV
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Hab is approximately proportional to:  (1) the orbital overlap

(2) the average of Haa and Hab

Hab < 0

Traditionally, Hab is called the “Resonance Integral”.

0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 

Interaction energy between atomic orbitals,

a and b .

*

ab a b a bH H H d      

Wolfsberg-Helmholtz Formula

(used in Extended Hückel Model)

1.75
2

aa bb
ab ab

H H
H K S K
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Interpretation of Orbital Coefficients

Let’s assume that an MO is a linear combination of 2 normalized AO’s:

Normalization:

 MO a a b bN c c   

21 MO MO MOd    

   1 a a b b a a b bN c c N c c     

2 2 21 2a a a b b b a b a bN c c c c         

2 2 21 2a b a b abN c c c c S    

Orbital

Overlap

ab a bS  where

2 2

1

2a b a b ab

N
c c c c S
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Fraction of electron density in orbital b

Fraction of electron density in orbital a

Fraction of electron density in orbital i

 
2 2

1

2
MO a a b b

a b a b ab

c c
c c c c S

   
 

If Sab  0:
2 2 2 2

a b
MO a b

a b a b

c c

c c c c
   

 

2

2 2

a
a

a b

c
f

c c




2

2 2

b
b

a b

c
f

c c




General: MO i iN c  

2

2

i
i

i

c
f

c
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Homonuclear Diatomic Molecules:

Heteronuclear Diatomic Molecules:

2

2 2

a
a

a b

c
f

c c




2

2 2

b
b

a b

c
f

c c



0

aa ab ab

ab ab bb

H E H E S

H E S H E

 


 

bb aaH H

b ac c

0.50a bf f 

bb aaH H

b ac c

b af f
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One has a quadratic equation, which can be solved to yield

two values for the energy, <E>.

One can then determine cb/ca for both the bonding

and antibonding orbitals.

Antibonding (A)

Bonding (B)

a

b

aaE H

bbE H

B a a b bc c   

' '

A a a b bc c   

0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 

        0aa bb ab ab ab abH E H E H E S H E S     
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A Numerical Example:  Hydrogen Fluoride (HF)

+

-
2pzb(F)

+

1sa(H)

Matrix Elements

0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 

   1 ( ) 2 ( )MO a a b b a a b zbN c c N c s H c p F     

1 ( ) 1 ( ) 13.6aa a a a aH H s H H s H eV    

2 ( ) 2 ( ) 17.4bb b b zb zbH H p F H p F eV    

1 ( ) 2 ( ) 2.0ab a b a zbH H s F H p F eV    

1 ( ) 2 ( ) 0ab a b a zbS s H p F   
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0
aa ab ab

ab ab bb

H E H E S

H E S H E

 


 
 

 

 



13.6

17.4

2.0

0

aa

bb

ab

ab

H eV

H eV

H eV

S

  


  

13.6 2
0

2 17.4

E

E

              13.6 17.4 2 2 0E E

  
2

31.0 232.64 0E E

  


231.0 (31.0) 4(1)(232.64)

2
E

 
  

31.0 30.44
18.26

2B
E eV

 
  

31.0 30.44
12.74

2A
E eV
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13.6 2
0

2 17.4

E

E

 

 

   

    

13.6 2 0

2 17.4 0

a b

a b

E c c

c E c

Bonding MO Antibonding MO

       13.6 18.25 2 0a bc c

  2.33 2.33b
b a

a

c
c c

c

 

 

 

  

 

 

 

 

 

2.33

2.33

B a a b b

a a b

a b

c c

c

N

 
    


2

1
2.33

1 2.33
B a b

   

   

0.394 0.919

0.394 1 ( ) 0.919 2 ( )

B a b

a zbs H p F

   

   

0.919 0.394

0.919 1 ( ) 0.394 2 ( )

A a b

a zbs H p F

    0.430 0.430b
b a

a

c
c c

c

 

 

 

  

 

 

 

 

 

0.430

0.430

A a a b b

a a b

a b

c c

c

N

 
    

 
2

1
0.430

1 0.430
A a b

       13.6 12.74 2 0a bc c
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Electron Densities in Hydrogen Fluoride

Bonding Orbital

Over 80% of the electron density of the two electrons in the 

bonding MO resides on the Fluorine atom in HF.

Antibonding Orbital

The situation is reversed in the Antibonding MO.

However, remember that there are no electrons in this orbital.

       0.394 0.919 0.394 1 ( ) 0.919 2 ( )B a b a zbs H p F

    


2
2

2 2
0.394 0.16a

a H

a b

c
f f

c c
    



2
2

2 2
0.919 0.84b

b F

a b

c
f f

c c

       0.919 0.394 0.919 1 ( ) 0.394 2 ( )A a b a zbs H p F

    


2
2

2 2
0.919 0.84a

a H

a b

c
f f

c c
    



2
2

2 2
0.394 0.16b

b F

a b

c
f f

c c


